首页> 外文OA文献 >Computing AIC for black-box models using Generalised Degrees of Freedom: a comparison with cross-validation
【2h】

Computing AIC for black-box models using Generalised Degrees of Freedom: a comparison with cross-validation

机译:使用广义自由度计算黑盒模型的aIC:   与交叉验证的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Generalised Degrees of Freedom (GDF), as defined by Ye (1998 JASA93:120-131), represent the sensitivity of model fits to perturbations of thedata. As such they can be computed for any statistical model, making itpossible, in principle, to derive the number of parameters in machine-learningapproaches. Defined originally for normally distributed data only, we hereinvestigate the potential of this approach for Bernoulli-data. GDF-values formodels of simulated and real data are compared to model complexity-estimatesfrom cross-validation. Similarly, we computed GDF-based AICc for randomForest,neural networks and boosted regression trees and demonstrated its similarity tocross-validation. GDF-estimates for binary data were unstable andinconsistently sensitive to the number of data points perturbed simultaneously,while at the same time being extremely computer-intensive in their calculation.Repeated 10-fold cross-validation was more robust, based on fewer assumptionsand faster to compute. Our findings suggest that the GDF-approach does notreadily transfer to Bernoulli data and a wider range of regression approaches.
机译:由Ye(1998 JASA93:120-131)定义的广义自由度(GDF)表示模型拟合对数据扰动的敏感性。因此,可以为任何统计模型计算它们,原则上使其有可能推导机器学习方法中的参数数量。最初仅针对正态分布数据定义,我们在此研究此方法对伯努利数据的潜力。将模拟和真实数据模型的GDF值与通过交叉验证得出的模型复杂性估算值进行比较。同样,我们为randomForest,神经网络计算了基于GDF的AICc,并增强了回归树,并证明了其与交叉​​验证的相似性。二进制数据的GDF估计值不稳定且对同时受到扰动的数据点数量不敏感,同时对它们的计算非常计算机化。基于较少的假设,重复的10倍交叉验证更鲁棒,并且更快计算。我们的发现表明,GDF方法无法立即转换为伯努利数据,并且回归方法的范围更广。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号